extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3).1C23 = C2×C12⋊2Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).1C2^3 | 192,1027 |
(C2×Dic3).2C23 = C2×C12.6Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).2C2^3 | 192,1028 |
(C2×Dic3).3C23 = C42.274D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).3C2^3 | 192,1029 |
(C2×Dic3).4C23 = C2×C42⋊7S3 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).4C2^3 | 192,1035 |
(C2×Dic3).5C23 = C42.276D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).5C2^3 | 192,1036 |
(C2×Dic3).6C23 = C2×C42⋊3S3 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).6C2^3 | 192,1037 |
(C2×Dic3).7C23 = C42.277D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).7C2^3 | 192,1038 |
(C2×Dic3).8C23 = C23⋊3Dic6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).8C2^3 | 192,1042 |
(C2×Dic3).9C23 = C2×C23.21D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).9C2^3 | 192,1051 |
(C2×Dic3).10C23 = C23⋊4D12 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).10C2^3 | 192,1052 |
(C2×Dic3).11C23 = C24.41D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).11C2^3 | 192,1053 |
(C2×Dic3).12C23 = C24.42D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).12C2^3 | 192,1054 |
(C2×Dic3).13C23 = C2×C12⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).13C2^3 | 192,1056 |
(C2×Dic3).14C23 = C6.72+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).14C2^3 | 192,1059 |
(C2×Dic3).15C23 = C2×C4.D12 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).15C2^3 | 192,1068 |
(C2×Dic3).16C23 = C6.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).16C2^3 | 192,1069 |
(C2×Dic3).17C23 = C2×C4⋊C4⋊S3 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).17C2^3 | 192,1071 |
(C2×Dic3).18C23 = C6.52- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).18C2^3 | 192,1072 |
(C2×Dic3).19C23 = C6.112+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).19C2^3 | 192,1073 |
(C2×Dic3).20C23 = C6.62- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).20C2^3 | 192,1074 |
(C2×Dic3).21C23 = C42.89D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).21C2^3 | 192,1077 |
(C2×Dic3).22C23 = C42.90D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).22C2^3 | 192,1078 |
(C2×Dic3).23C23 = C42⋊11D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).23C2^3 | 192,1084 |
(C2×Dic3).24C23 = C42.92D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).24C2^3 | 192,1085 |
(C2×Dic3).25C23 = C42.93D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).25C2^3 | 192,1087 |
(C2×Dic3).26C23 = C42.94D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).26C2^3 | 192,1088 |
(C2×Dic3).27C23 = C42.95D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).27C2^3 | 192,1089 |
(C2×Dic3).28C23 = C42.96D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).28C2^3 | 192,1090 |
(C2×Dic3).29C23 = C42.97D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).29C2^3 | 192,1091 |
(C2×Dic3).30C23 = C42.98D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).30C2^3 | 192,1092 |
(C2×Dic3).31C23 = C42.99D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).31C2^3 | 192,1093 |
(C2×Dic3).32C23 = C42.100D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).32C2^3 | 192,1094 |
(C2×Dic3).33C23 = D4⋊5Dic6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).33C2^3 | 192,1098 |
(C2×Dic3).34C23 = C42.104D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).34C2^3 | 192,1099 |
(C2×Dic3).35C23 = C42.105D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).35C2^3 | 192,1100 |
(C2×Dic3).36C23 = C42.106D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).36C2^3 | 192,1101 |
(C2×Dic3).37C23 = D4⋊6Dic6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).37C2^3 | 192,1102 |
(C2×Dic3).38C23 = C42⋊14D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).38C2^3 | 192,1106 |
(C2×Dic3).39C23 = D4×D12 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).39C2^3 | 192,1108 |
(C2×Dic3).40C23 = D12⋊23D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).40C2^3 | 192,1109 |
(C2×Dic3).41C23 = D12⋊24D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).41C2^3 | 192,1110 |
(C2×Dic3).42C23 = D4⋊5D12 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).42C2^3 | 192,1113 |
(C2×Dic3).43C23 = C42.113D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).43C2^3 | 192,1117 |
(C2×Dic3).44C23 = C42.114D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).44C2^3 | 192,1118 |
(C2×Dic3).45C23 = C42⋊19D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).45C2^3 | 192,1119 |
(C2×Dic3).46C23 = C42.115D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).46C2^3 | 192,1120 |
(C2×Dic3).47C23 = C42.116D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).47C2^3 | 192,1121 |
(C2×Dic3).48C23 = C42.118D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).48C2^3 | 192,1123 |
(C2×Dic3).49C23 = C42.119D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).49C2^3 | 192,1124 |
(C2×Dic3).50C23 = Dic6⋊10Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).50C2^3 | 192,1126 |
(C2×Dic3).51C23 = Q8⋊6Dic6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).51C2^3 | 192,1128 |
(C2×Dic3).52C23 = Q8⋊7Dic6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).52C2^3 | 192,1129 |
(C2×Dic3).53C23 = Q8×D12 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).53C2^3 | 192,1134 |
(C2×Dic3).54C23 = Q8⋊6D12 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).54C2^3 | 192,1135 |
(C2×Dic3).55C23 = D12⋊10Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).55C2^3 | 192,1138 |
(C2×Dic3).56C23 = C42.132D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).56C2^3 | 192,1140 |
(C2×Dic3).57C23 = C42.133D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).57C2^3 | 192,1141 |
(C2×Dic3).58C23 = C42.134D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).58C2^3 | 192,1142 |
(C2×Dic3).59C23 = C42.136D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).59C2^3 | 192,1144 |
(C2×Dic3).60C23 = C24⋊7D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).60C2^3 | 192,1148 |
(C2×Dic3).61C23 = C24.45D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).61C2^3 | 192,1151 |
(C2×Dic3).62C23 = C24.46D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).62C2^3 | 192,1152 |
(C2×Dic3).63C23 = C24⋊9D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).63C2^3 | 192,1153 |
(C2×Dic3).64C23 = C24.47D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).64C2^3 | 192,1154 |
(C2×Dic3).65C23 = Dic6⋊19D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).65C2^3 | 192,1157 |
(C2×Dic3).66C23 = C6.342+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).66C2^3 | 192,1160 |
(C2×Dic3).67C23 = C6.702- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).67C2^3 | 192,1161 |
(C2×Dic3).68C23 = C6.712- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).68C2^3 | 192,1162 |
(C2×Dic3).69C23 = S3×C4⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).69C2^3 | 192,1163 |
(C2×Dic3).70C23 = C6.372+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).70C2^3 | 192,1164 |
(C2×Dic3).71C23 = C4⋊C4⋊21D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).71C2^3 | 192,1165 |
(C2×Dic3).72C23 = C6.382+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).72C2^3 | 192,1166 |
(C2×Dic3).73C23 = C6.722- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).73C2^3 | 192,1167 |
(C2×Dic3).74C23 = C6.402+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).74C2^3 | 192,1169 |
(C2×Dic3).75C23 = D12⋊20D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).75C2^3 | 192,1171 |
(C2×Dic3).76C23 = C6.422+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).76C2^3 | 192,1172 |
(C2×Dic3).77C23 = C6.432+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).77C2^3 | 192,1173 |
(C2×Dic3).78C23 = C6.442+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).78C2^3 | 192,1174 |
(C2×Dic3).79C23 = C6.452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).79C2^3 | 192,1175 |
(C2×Dic3).80C23 = C6.472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).80C2^3 | 192,1178 |
(C2×Dic3).81C23 = C6.482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).81C2^3 | 192,1179 |
(C2×Dic3).82C23 = C6.492+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).82C2^3 | 192,1180 |
(C2×Dic3).83C23 = (Q8×Dic3)⋊C2 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).83C2^3 | 192,1181 |
(C2×Dic3).84C23 = C6.152- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).84C2^3 | 192,1184 |
(C2×Dic3).85C23 = S3×C22⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).85C2^3 | 192,1185 |
(C2×Dic3).86C23 = C4⋊C4⋊26D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).86C2^3 | 192,1186 |
(C2×Dic3).87C23 = C6.162- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).87C2^3 | 192,1187 |
(C2×Dic3).88C23 = C6.172- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).88C2^3 | 192,1188 |
(C2×Dic3).89C23 = C6.512+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).89C2^3 | 192,1193 |
(C2×Dic3).90C23 = C6.1182+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).90C2^3 | 192,1194 |
(C2×Dic3).91C23 = C6.522+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).91C2^3 | 192,1195 |
(C2×Dic3).92C23 = C6.532+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).92C2^3 | 192,1196 |
(C2×Dic3).93C23 = C6.212- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).93C2^3 | 192,1198 |
(C2×Dic3).94C23 = C6.242- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).94C2^3 | 192,1202 |
(C2×Dic3).95C23 = C6.782- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).95C2^3 | 192,1204 |
(C2×Dic3).96C23 = C6.252- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).96C2^3 | 192,1205 |
(C2×Dic3).97C23 = C6.592+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).97C2^3 | 192,1206 |
(C2×Dic3).98C23 = C4⋊C4.197D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).98C2^3 | 192,1208 |
(C2×Dic3).99C23 = C6.802- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).99C2^3 | 192,1209 |
(C2×Dic3).100C23 = C6.812- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).100C2^3 | 192,1210 |
(C2×Dic3).101C23 = C6.1202+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).101C2^3 | 192,1212 |
(C2×Dic3).102C23 = C6.1212+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).102C2^3 | 192,1213 |
(C2×Dic3).103C23 = C6.822- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).103C2^3 | 192,1214 |
(C2×Dic3).104C23 = C4⋊C4⋊28D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).104C2^3 | 192,1215 |
(C2×Dic3).105C23 = C6.622+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).105C2^3 | 192,1218 |
(C2×Dic3).106C23 = C6.632+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).106C2^3 | 192,1219 |
(C2×Dic3).107C23 = C6.652+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).107C2^3 | 192,1221 |
(C2×Dic3).108C23 = C6.852- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).108C2^3 | 192,1224 |
(C2×Dic3).109C23 = C6.682+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).109C2^3 | 192,1225 |
(C2×Dic3).110C23 = C6.692+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).110C2^3 | 192,1226 |
(C2×Dic3).111C23 = C42.140D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).111C2^3 | 192,1231 |
(C2×Dic3).112C23 = S3×C4.4D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).112C2^3 | 192,1232 |
(C2×Dic3).113C23 = C42⋊20D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).113C2^3 | 192,1233 |
(C2×Dic3).114C23 = C42.141D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).114C2^3 | 192,1234 |
(C2×Dic3).115C23 = D12⋊10D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).115C2^3 | 192,1235 |
(C2×Dic3).116C23 = C42.144D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).116C2^3 | 192,1241 |
(C2×Dic3).117C23 = C42⋊24D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).117C2^3 | 192,1242 |
(C2×Dic3).118C23 = C42.145D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).118C2^3 | 192,1243 |
(C2×Dic3).119C23 = Dic6⋊7Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).119C2^3 | 192,1244 |
(C2×Dic3).120C23 = C42.147D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).120C2^3 | 192,1245 |
(C2×Dic3).121C23 = C42.148D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).121C2^3 | 192,1248 |
(C2×Dic3).122C23 = D12⋊7Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).122C2^3 | 192,1249 |
(C2×Dic3).123C23 = C42.152D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).123C2^3 | 192,1253 |
(C2×Dic3).124C23 = C42.153D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).124C2^3 | 192,1254 |
(C2×Dic3).125C23 = C42.157D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).125C2^3 | 192,1258 |
(C2×Dic3).126C23 = C42.158D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).126C2^3 | 192,1259 |
(C2×Dic3).127C23 = C42.159D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).127C2^3 | 192,1260 |
(C2×Dic3).128C23 = S3×C42⋊2C2 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).128C2^3 | 192,1262 |
(C2×Dic3).129C23 = C42⋊26D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).129C2^3 | 192,1264 |
(C2×Dic3).130C23 = C42.162D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).130C2^3 | 192,1267 |
(C2×Dic3).131C23 = C42⋊27D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).131C2^3 | 192,1270 |
(C2×Dic3).132C23 = C42.165D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).132C2^3 | 192,1271 |
(C2×Dic3).133C23 = C42.166D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).133C2^3 | 192,1272 |
(C2×Dic3).134C23 = C42⋊28D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).134C2^3 | 192,1274 |
(C2×Dic3).135C23 = C42.238D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).135C2^3 | 192,1275 |
(C2×Dic3).136C23 = D12⋊11D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).136C2^3 | 192,1276 |
(C2×Dic3).137C23 = C42.168D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).137C2^3 | 192,1278 |
(C2×Dic3).138C23 = C42⋊30D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).138C2^3 | 192,1279 |
(C2×Dic3).139C23 = S3×C4⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).139C2^3 | 192,1282 |
(C2×Dic3).140C23 = C42.171D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).140C2^3 | 192,1283 |
(C2×Dic3).141C23 = D12⋊12D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).141C2^3 | 192,1285 |
(C2×Dic3).142C23 = D12⋊8Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).142C2^3 | 192,1286 |
(C2×Dic3).143C23 = C42.241D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).143C2^3 | 192,1287 |
(C2×Dic3).144C23 = C42.174D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).144C2^3 | 192,1288 |
(C2×Dic3).145C23 = D12⋊9Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).145C2^3 | 192,1289 |
(C2×Dic3).146C23 = C42.177D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).146C2^3 | 192,1291 |
(C2×Dic3).147C23 = C42.180D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).147C2^3 | 192,1294 |
(C2×Dic3).148C23 = C2×C12.48D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).148C2^3 | 192,1343 |
(C2×Dic3).149C23 = C2×C23.28D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).149C2^3 | 192,1348 |
(C2×Dic3).150C23 = C2×C12⋊7D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).150C2^3 | 192,1349 |
(C2×Dic3).151C23 = C24.83D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).151C2^3 | 192,1350 |
(C2×Dic3).152C23 = C2×D6⋊3D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).152C2^3 | 192,1359 |
(C2×Dic3).153C23 = D4×C3⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).153C2^3 | 192,1360 |
(C2×Dic3).154C23 = C24⋊12D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).154C2^3 | 192,1363 |
(C2×Dic3).155C23 = C24.52D6 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).155C2^3 | 192,1364 |
(C2×Dic3).156C23 = C2×Dic3⋊Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).156C2^3 | 192,1369 |
(C2×Dic3).157C23 = C2×D6⋊3Q8 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).157C2^3 | 192,1372 |
(C2×Dic3).158C23 = Q8×C3⋊D4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).158C2^3 | 192,1374 |
(C2×Dic3).159C23 = C6.442- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).159C2^3 | 192,1375 |
(C2×Dic3).160C23 = C6.1042- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).160C2^3 | 192,1383 |
(C2×Dic3).161C23 = C6.1052- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).161C2^3 | 192,1384 |
(C2×Dic3).162C23 = C6.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).162C2^3 | 192,1388 |
(C2×Dic3).163C23 = C6.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).163C2^3 | 192,1389 |
(C2×Dic3).164C23 = C6.1072- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).164C2^3 | 192,1390 |
(C2×Dic3).165C23 = C6.1082- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).165C2^3 | 192,1392 |
(C2×Dic3).166C23 = C6.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).166C2^3 | 192,1393 |
(C2×Dic3).167C23 = C2×Q8○D12 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).167C2^3 | 192,1522 |
(C2×Dic3).168C23 = C6.C25 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | 4 | (C2xDic3).168C2^3 | 192,1523 |
(C2×Dic3).169C23 = D6.C24 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | 8- | (C2xDic3).169C2^3 | 192,1525 |
(C2×Dic3).170C23 = S3×2- 1+4 | φ: C23/C2 → C22 ⊆ Out C2×Dic3 | 48 | 8- | (C2xDic3).170C2^3 | 192,1526 |
(C2×Dic3).171C23 = C2×C4×Dic6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).171C2^3 | 192,1026 |
(C2×Dic3).172C23 = C2×C42⋊2S3 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).172C2^3 | 192,1031 |
(C2×Dic3).173C23 = C2×C4×D12 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).173C2^3 | 192,1032 |
(C2×Dic3).174C23 = C4×C4○D12 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).174C2^3 | 192,1033 |
(C2×Dic3).175C23 = C2×Dic3.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).175C2^3 | 192,1040 |
(C2×Dic3).176C23 = C2×C23.8D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).176C2^3 | 192,1041 |
(C2×Dic3).177C23 = C24.35D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).177C2^3 | 192,1045 |
(C2×Dic3).178C23 = C2×C23.9D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).178C2^3 | 192,1047 |
(C2×Dic3).179C23 = C2×Dic3⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).179C2^3 | 192,1048 |
(C2×Dic3).180C23 = C24.38D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).180C2^3 | 192,1049 |
(C2×Dic3).181C23 = C2×C23.11D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).181C2^3 | 192,1050 |
(C2×Dic3).182C23 = C2×Dic3.Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).182C2^3 | 192,1057 |
(C2×Dic3).183C23 = C2×C4.Dic6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).183C2^3 | 192,1058 |
(C2×Dic3).184C23 = C2×S3×C4⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).184C2^3 | 192,1060 |
(C2×Dic3).185C23 = C2×C4⋊C4⋊7S3 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).185C2^3 | 192,1061 |
(C2×Dic3).186C23 = C6.82+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).186C2^3 | 192,1063 |
(C2×Dic3).187C23 = C2×D6.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).187C2^3 | 192,1064 |
(C2×Dic3).188C23 = C2×C12⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).188C2^3 | 192,1065 |
(C2×Dic3).189C23 = C6.2- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).189C2^3 | 192,1066 |
(C2×Dic3).190C23 = C2×D6⋊Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).190C2^3 | 192,1067 |
(C2×Dic3).191C23 = C6.102+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).191C2^3 | 192,1070 |
(C2×Dic3).192C23 = C42.87D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).192C2^3 | 192,1075 |
(C2×Dic3).193C23 = C42.88D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).193C2^3 | 192,1076 |
(C2×Dic3).194C23 = S3×C42⋊C2 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).194C2^3 | 192,1079 |
(C2×Dic3).195C23 = C42⋊9D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).195C2^3 | 192,1080 |
(C2×Dic3).196C23 = C42.91D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).196C2^3 | 192,1082 |
(C2×Dic3).197C23 = C42⋊10D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).197C2^3 | 192,1083 |
(C2×Dic3).198C23 = C42⋊12D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).198C2^3 | 192,1086 |
(C2×Dic3).199C23 = D4×Dic6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).199C2^3 | 192,1096 |
(C2×Dic3).200C23 = C42.102D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).200C2^3 | 192,1097 |
(C2×Dic3).201C23 = C42⋊13D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).201C2^3 | 192,1104 |
(C2×Dic3).202C23 = C42.108D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).202C2^3 | 192,1105 |
(C2×Dic3).203C23 = C42.228D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).203C2^3 | 192,1107 |
(C2×Dic3).204C23 = Dic6⋊23D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).204C2^3 | 192,1111 |
(C2×Dic3).205C23 = Dic6⋊24D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).205C2^3 | 192,1112 |
(C2×Dic3).206C23 = D4⋊6D12 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).206C2^3 | 192,1114 |
(C2×Dic3).207C23 = C42⋊18D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).207C2^3 | 192,1115 |
(C2×Dic3).208C23 = C42.229D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).208C2^3 | 192,1116 |
(C2×Dic3).209C23 = C42.117D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).209C2^3 | 192,1122 |
(C2×Dic3).210C23 = Q8×Dic6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).210C2^3 | 192,1125 |
(C2×Dic3).211C23 = C42.122D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).211C2^3 | 192,1127 |
(C2×Dic3).212C23 = C42.125D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).212C2^3 | 192,1131 |
(C2×Dic3).213C23 = C4×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).213C2^3 | 192,1132 |
(C2×Dic3).214C23 = C42.126D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).214C2^3 | 192,1133 |
(C2×Dic3).215C23 = Q8⋊7D12 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).215C2^3 | 192,1136 |
(C2×Dic3).216C23 = C42.232D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).216C2^3 | 192,1137 |
(C2×Dic3).217C23 = C42.131D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).217C2^3 | 192,1139 |
(C2×Dic3).218C23 = C42.135D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).218C2^3 | 192,1143 |
(C2×Dic3).219C23 = C24.67D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).219C2^3 | 192,1145 |
(C2×Dic3).220C23 = C24.43D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).220C2^3 | 192,1146 |
(C2×Dic3).221C23 = C24⋊8D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).221C2^3 | 192,1149 |
(C2×Dic3).222C23 = C24.44D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).222C2^3 | 192,1150 |
(C2×Dic3).223C23 = C12⋊(C4○D4) | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).223C2^3 | 192,1155 |
(C2×Dic3).224C23 = C6.322+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).224C2^3 | 192,1156 |
(C2×Dic3).225C23 = Dic6⋊20D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).225C2^3 | 192,1158 |
(C2×Dic3).226C23 = C4⋊C4.178D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).226C2^3 | 192,1159 |
(C2×Dic3).227C23 = D12⋊19D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).227C2^3 | 192,1168 |
(C2×Dic3).228C23 = C6.732- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).228C2^3 | 192,1170 |
(C2×Dic3).229C23 = C6.462+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).229C2^3 | 192,1176 |
(C2×Dic3).230C23 = C6.1152+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).230C2^3 | 192,1177 |
(C2×Dic3).231C23 = C6.752- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).231C2^3 | 192,1182 |
(C2×Dic3).232C23 = C4⋊C4.187D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).232C2^3 | 192,1183 |
(C2×Dic3).233C23 = D12⋊21D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).233C2^3 | 192,1189 |
(C2×Dic3).234C23 = D12⋊22D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).234C2^3 | 192,1190 |
(C2×Dic3).235C23 = Dic6⋊21D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).235C2^3 | 192,1191 |
(C2×Dic3).236C23 = Dic6⋊22D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).236C2^3 | 192,1192 |
(C2×Dic3).237C23 = C6.202- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).237C2^3 | 192,1197 |
(C2×Dic3).238C23 = C6.222- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).238C2^3 | 192,1199 |
(C2×Dic3).239C23 = C6.232- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).239C2^3 | 192,1200 |
(C2×Dic3).240C23 = C6.772- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).240C2^3 | 192,1201 |
(C2×Dic3).241C23 = C6.562+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).241C2^3 | 192,1203 |
(C2×Dic3).242C23 = C6.792- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).242C2^3 | 192,1207 |
(C2×Dic3).243C23 = S3×C22.D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).243C2^3 | 192,1211 |
(C2×Dic3).244C23 = C6.612+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).244C2^3 | 192,1216 |
(C2×Dic3).245C23 = C6.1222+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).245C2^3 | 192,1217 |
(C2×Dic3).246C23 = C6.642+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).246C2^3 | 192,1220 |
(C2×Dic3).247C23 = C6.662+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).247C2^3 | 192,1222 |
(C2×Dic3).248C23 = C6.672+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).248C2^3 | 192,1223 |
(C2×Dic3).249C23 = C42.233D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).249C2^3 | 192,1227 |
(C2×Dic3).250C23 = C42.137D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).250C2^3 | 192,1228 |
(C2×Dic3).251C23 = C42.138D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).251C2^3 | 192,1229 |
(C2×Dic3).252C23 = C42.139D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).252C2^3 | 192,1230 |
(C2×Dic3).253C23 = Dic6⋊10D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).253C2^3 | 192,1236 |
(C2×Dic3).254C23 = C42⋊22D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).254C2^3 | 192,1237 |
(C2×Dic3).255C23 = C42⋊23D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).255C2^3 | 192,1238 |
(C2×Dic3).256C23 = C42.143D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).256C2^3 | 192,1240 |
(C2×Dic3).257C23 = S3×C42.C2 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).257C2^3 | 192,1246 |
(C2×Dic3).258C23 = C42.150D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).258C2^3 | 192,1251 |
(C2×Dic3).259C23 = C42.151D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).259C2^3 | 192,1252 |
(C2×Dic3).260C23 = C42.154D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).260C2^3 | 192,1255 |
(C2×Dic3).261C23 = C42.155D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).261C2^3 | 192,1256 |
(C2×Dic3).262C23 = C42.156D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).262C2^3 | 192,1257 |
(C2×Dic3).263C23 = C42.160D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).263C2^3 | 192,1261 |
(C2×Dic3).264C23 = C42⋊25D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).264C2^3 | 192,1263 |
(C2×Dic3).265C23 = C42.161D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).265C2^3 | 192,1266 |
(C2×Dic3).266C23 = C42.163D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).266C2^3 | 192,1268 |
(C2×Dic3).267C23 = C42.164D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).267C2^3 | 192,1269 |
(C2×Dic3).268C23 = S3×C4⋊1D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).268C2^3 | 192,1273 |
(C2×Dic3).269C23 = Dic6⋊11D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).269C2^3 | 192,1277 |
(C2×Dic3).270C23 = Dic6⋊8Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).270C2^3 | 192,1280 |
(C2×Dic3).271C23 = Dic6⋊9Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).271C2^3 | 192,1281 |
(C2×Dic3).272C23 = C42.240D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).272C2^3 | 192,1284 |
(C2×Dic3).273C23 = C42.176D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).273C2^3 | 192,1290 |
(C2×Dic3).274C23 = C42.178D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).274C2^3 | 192,1292 |
(C2×Dic3).275C23 = C42.179D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).275C2^3 | 192,1293 |
(C2×Dic3).276C23 = C22×Dic3⋊C4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).276C2^3 | 192,1342 |
(C2×Dic3).277C23 = C22×C4⋊Dic3 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).277C2^3 | 192,1344 |
(C2×Dic3).278C23 = C2×C23.26D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).278C2^3 | 192,1345 |
(C2×Dic3).279C23 = C2×C4×C3⋊D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).279C2^3 | 192,1347 |
(C2×Dic3).280C23 = C2×D4×Dic3 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).280C2^3 | 192,1354 |
(C2×Dic3).281C23 = C2×C23.23D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).281C2^3 | 192,1355 |
(C2×Dic3).282C23 = C2×C23.12D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).282C2^3 | 192,1356 |
(C2×Dic3).283C23 = C24.49D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).283C2^3 | 192,1357 |
(C2×Dic3).284C23 = C2×C23.14D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).284C2^3 | 192,1361 |
(C2×Dic3).285C23 = C2×C12⋊3D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).285C2^3 | 192,1362 |
(C2×Dic3).286C23 = C24.53D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).286C2^3 | 192,1365 |
(C2×Dic3).287C23 = C2×Q8×Dic3 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).287C2^3 | 192,1370 |
(C2×Dic3).288C23 = C6.422- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).288C2^3 | 192,1371 |
(C2×Dic3).289C23 = C2×C12.23D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).289C2^3 | 192,1373 |
(C2×Dic3).290C23 = C6.452- 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).290C2^3 | 192,1376 |
(C2×Dic3).291C23 = Dic3×C4○D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).291C2^3 | 192,1385 |
(C2×Dic3).292C23 = C6.1442+ 1+4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).292C2^3 | 192,1386 |
(C2×Dic3).293C23 = (C2×D4)⋊43D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).293C2^3 | 192,1387 |
(C2×Dic3).294C23 = (C2×C12)⋊17D4 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).294C2^3 | 192,1391 |
(C2×Dic3).295C23 = C23×Dic6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 192 | | (C2xDic3).295C2^3 | 192,1510 |
(C2×Dic3).296C23 = C22×C4○D12 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).296C2^3 | 192,1513 |
(C2×Dic3).297C23 = C22×S3×Q8 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).297C2^3 | 192,1517 |
(C2×Dic3).298C23 = C2×Q8.15D6 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 96 | | (C2xDic3).298C2^3 | 192,1519 |
(C2×Dic3).299C23 = C2×D4○D12 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | | (C2xDic3).299C2^3 | 192,1521 |
(C2×Dic3).300C23 = D12.39C23 | φ: C23/C22 → C2 ⊆ Out C2×Dic3 | 48 | 8+ | (C2xDic3).300C2^3 | 192,1527 |
(C2×Dic3).301C23 = S3×C2×C42 | φ: trivial image | 96 | | (C2xDic3).301C2^3 | 192,1030 |
(C2×Dic3).302C23 = C2×C23.16D6 | φ: trivial image | 96 | | (C2xDic3).302C2^3 | 192,1039 |
(C2×Dic3).303C23 = C2×Dic3⋊4D4 | φ: trivial image | 96 | | (C2xDic3).303C2^3 | 192,1044 |
(C2×Dic3).304C23 = C2×Dic6⋊C4 | φ: trivial image | 192 | | (C2xDic3).304C2^3 | 192,1055 |
(C2×Dic3).305C23 = C2×Dic3⋊5D4 | φ: trivial image | 96 | | (C2xDic3).305C2^3 | 192,1062 |
(C2×Dic3).306C23 = C42.188D6 | φ: trivial image | 96 | | (C2xDic3).306C2^3 | 192,1081 |
(C2×Dic3).307C23 = C4×D4⋊2S3 | φ: trivial image | 96 | | (C2xDic3).307C2^3 | 192,1095 |
(C2×Dic3).308C23 = C4×S3×D4 | φ: trivial image | 48 | | (C2xDic3).308C2^3 | 192,1103 |
(C2×Dic3).309C23 = C4×S3×Q8 | φ: trivial image | 96 | | (C2xDic3).309C2^3 | 192,1130 |
(C2×Dic3).310C23 = C42.234D6 | φ: trivial image | 96 | | (C2xDic3).310C2^3 | 192,1239 |
(C2×Dic3).311C23 = C42.236D6 | φ: trivial image | 96 | | (C2xDic3).311C2^3 | 192,1247 |
(C2×Dic3).312C23 = C42.237D6 | φ: trivial image | 96 | | (C2xDic3).312C2^3 | 192,1250 |
(C2×Dic3).313C23 = C42.189D6 | φ: trivial image | 96 | | (C2xDic3).313C2^3 | 192,1265 |
(C2×Dic3).314C23 = Dic3×C22×C4 | φ: trivial image | 192 | | (C2xDic3).314C2^3 | 192,1341 |
(C2×Dic3).315C23 = C22×Q8⋊3S3 | φ: trivial image | 96 | | (C2xDic3).315C2^3 | 192,1518 |